

Welcome to Google Calendar Simple API’s documentation!

Google Calendar Simple API or gcsa is a library that simplifies event management in a Google Calendars.
It is a Pythonic object oriented adapter for the official API [https://developers.google.com/calendar].

Example usage

List events

from gcsa.google_calendar import GoogleCalendar

calendar = GoogleCalendar('your_email@gmail.com')
for event in calendar:
 print(event)

Create event

from gcsa.event import Event

event = Event(
 'The Glass Menagerie',
 start=datetime(2020, 7, 10, 19, 0),
 location='Záhřebská 468/21'
 minutes_before_popup_reminder=15
)
calendar.add_event(event)

Create recurring event

from gcsa.recurrence import Recurrence, DAILY

event = Event(
 'Breakfast',
 start=date(2020, 7, 16),
 recurrence=Recurrence.rule(freq=DAILY)
)
calendar.add_event(event)

Contents

	Getting started
	Installation

	Credentials

	Quick example

	Authentication
	Credentials file

	Token object

	Multiple calendars

	Browser authentication timeout

	Events
	List events

	Get event by id

	List recurring event instances

	Create event

	Update event

	Import event

	Move event to another calendar

	Delete event

	Clear calendar

	Attendees

	Attachments

	Conference
	Existing conference

	New conference

	Reminders

	Recurrence
	Examples

	Serializers
	Events serializer

	Attachments serializer

	Person serializer

	Attendees serializer

	Conference serializer

	Reminders serializer

	Code documentation
	GoogleCalendar

	Event

	Person

	Attendees

	Attachments

	Conference

	Reminders

	Recurrence

Indices and tables

	Index

	Module Index

	Search Page

References

Template for setup.py was taken from kennethreitz/setup.py [https://github.com/kennethreitz/setup.py].

Getting started

Installation

To install gcsa run the following command:

pip install gcsa

from sources:

git clone git@github.com:kuzmoyev/google-calendar-simple-api.git
cd google-calendar-simple-api
python setup.py install

Credentials

Now you need to get your API credentials:

	Create a new Google Cloud Platform (GCP) project [https://developers.google.com/workspace/guides/create-project]

Note

You will need to enable the “Google Calendar API” for your project.

	Configure the OAuth consent screen [https://developers.google.com/workspace/guides/create-credentials#configure_the_oauth_consent_screen]

	Create a OAuth client ID credential [https://developers.google.com/workspace/guides/create-credentials#create_a_oauth_client_id_credential] and download the credentials.json file

	Put downloaded credentials.json file into ~/.credentials/ directory

See more options in Authentication.

Note

You can put credentials.json file anywhere you want and specify
the path to it in your code afterwords. But remember not to share it (e.g. add it
to .gitignore) as it is your private credentials.

Note

On the first run, your application will prompt you to the default browser
to get permissions from you to use your calendar. This will create
token.pickle file in the same folder (unless specified otherwise) as your
credentials.json. So don’t forget to also add it to .gitignore if
it is in a GIT repository.

If you don’t want to save it in .pickle file, you can use save_token=False
when initializing the GoogleCalendar.

Quick example

The following code will create a recurrent event in your calendar starting on January 1 and
repeating everyday at 9:00am except weekends and two holidays (April 19, April 22).

Then it will list all events for one year starting today.

For date/datetime objects you can use Pythons datetime [https://docs.python.org/3/library/datetime.html] module or as in the
example beautiful_date [https://github.com/kuzmoyev/beautiful-date] library (because it’s beautiful… just like you).

from gcsa.event import Event
from gcsa.google_calendar import GoogleCalendar
from gcsa.recurrence import Recurrence, DAILY, SU, SA

from beautiful_date import Jan, Apr

calendar = GoogleCalendar('your_email@gmail.com')
event = Event(
 'Breakfast',
 start=(1 / Jan / 2019)[9:00],
 recurrence=[
 Recurrence.rule(freq=DAILY),
 Recurrence.exclude_rule(by_week_day=[SU, SA]),
 Recurrence.exclude_times([
 (19 / Apr / 2019)[9:00],
 (22 / Apr / 2019)[9:00]
])
],
 minutes_before_email_reminder=50
)

calendar.add_event(event)

for event in calendar:
 print(event)

Authentication

There are several ways to authenticate in GoogleCalendar.

Credentials file

If you have a credentials.json file (see Getting started), GoogleCalendar will read all the needed data
to generate the token and refresh-token from it.

To read credentials.json from the default path (~/.credentials/credentials.json) use:

gc = GoogleCalendar()

In this case, if ~/.credentials/token.pickle file exists, it will read it and refresh only if needed. If
token.pickle does not exist, it will be created during authentication flow and saved alongside with
credentials.json in ~/.credentials/token.pickle.

To avoid saving the token use:

gc = GoogleCalendar(save_token=False)

After token is generated during authentication flow, it can be accessed in gc.credentials field.

To specify credentials.json file path use credentials_path parameter:

gc = GoogleCalendar(credentials_path='path/to/credentials.json')

Similarly, if token.pickle file exists in the same folder (path/to/), it will be used and refreshed only if
needed. If it doesn’t exist, it will be generated and stored alongside the credentials.json (in
path/to/token.pickle).

To specify different path for the pickled token file use token_path parameter:

gc = GoogleCalendar(credentials_path='path/to/credentials.json',
 token_path='another/path/user1_token.pickle')

That could be useful if you want to save the file elsewhere, or if you have multiple google accounts.

Token object

If you store/receive/generate the token in a different way, you can pass loaded token directly:

from google.oauth2.credentials import Credentials

token = Credentials(
 token='<access_token>',
 refresh_token='<refresh_token>',
 client_id='<client_id>',
 client_secret='<client_secret>',
 scopes=['https://www.googleapis.com/auth/calendar'],
 token_uri='https://oauth2.googleapis.com/token'
)
gc = GoogleCalendar(credentials=token)

It will be refreshed using refresh_token during initialization of GoogleCalendar if needed.

Multiple calendars

To authenticate multiple Google Calendars you should specify different token_path for each of them. Otherwise,
gcsa would overwrite default token file location:

gc_primary = GoogleCalendar(token_path='path/to/tokens/token_primary.pickle')
gc_secondary = GoogleCalendar(calendar='f7c1gf7av3g6f2dave17gan4b8@group.calendar.google.com',
 token_path='path/to/tokens/token_secondary.pickle')

Browser authentication timeout

If you’d like to avoid your script hanging in case user closes the browser without finishing authentication flow,
you can use the following solution with the help of Pebble [https://pypi.org/project/Pebble/].

First, install Pebble with pip install pebble.

from gcsa.google_calendar import GoogleCalendar
from concurrent.futures import TimeoutError
from pebble import concurrent

@concurrent.process(timeout=60)
def create_process():
 return GoogleCalendar()

if __name__ == '__main__':
 try:
 process = create_process()
 gc = process.result()
 except TimeoutError:
 print("User hasn't authenticated in 60 seconds")

Thanks to Teraskull [https://github.com/Teraskull] for the idea and the example.

Events

Event in gcsa is represented by the class Event. It stores all the needed information about
the event including its summary, starting and ending dates/times, attachments, reminders, recurrence rules, etc.

Current version of gcsa allows you to create a new events, retrieve, update, move and delete existing events.

To do so, create a GoogleCalendar instance (see Getting started to get your
credentials):

from gcsa.google_calendar import GoogleCalendar

calendar = GoogleCalendar()

List events

This code will print out events for one year starting today:

for event in calendar:
 print(event)

Specify range of listed events in two ways:

calendar.get_events(start_date, end_date, order_by='updated')

or

calendar[start_date:end_date:'updated']

start_date and end_date can be date or datetime objects. order_by can be ‘startTime’
or ‘updated’. If not specified, unspecified stable order is used.

Use query parameter for free text search through all event fields (except for extended properties):

calendar.get_events(query='Meeting')
calendar.get_events(query='John') # Name of attendee

Use single_events parameter to expand recurring events into instances and only return single one-off events and
instances of recurring events, but not the underlying recurring events themselves.

calendar.get_events(single_events=True)

Get event by id

calendar.get_event('<event_id>')

List recurring event instances

calendar.get_instances('<recurring_event_id>')

or

calendar.get_instances(recurring_event)

where recurring_event is Event object with set event_id. You’d probably get it from
the get_events method.

Create event

from beautiful_date import Apr, hours
from gcsa.event import Event

start = (22/Apr/2019)[12:00]
end = start + 2 * hours
event = Event('Meeting',
 start=start,
 end=end)

or to create an all-day event, use a date object:

from beautiful_date import Aug, days

start = 1/Aug/2021
end = start + 7 * days
event = Event('Vacation',
 start=start,
 end=end)

For date/datetime objects you can use Pythons datetime [https://docs.python.org/3/library/datetime.html] module or as in the
example beautiful_date [https://github.com/kuzmoyev/beautiful-date] library (because it’s beautiful… just like you).

Now add your event to the calendar:

calendar.add_event(event)

See dedicated pages on how to add Attendees, Attachments, Conference, Reminders, and
Recurrence to an event.

Update event

event.location = 'Prague'
calendar.update_event(event)

Import event

calendar.import_event(event)

This operation is used to add a private copy of an existing event to a calendar.

Move event to another calendar

calendar.move_event(event, destination_calendar_id='primary')

Delete event

calendar.delete_event(event)

Event has to have event_id to be updated, moved or deleted. Events that you get from
get_events() method already have their ids.

Clear calendar

Remove all events from the calendar:

calendar.clear()

Attendees

If you want to add attendee(s) to your event, just create Attendee (s) and pass
as an attendees parameter (you can also pass just an email of the attendee and
the Attendee will be created for you):

from gcsa.attendee import Attendee

attendee = Attendee(
 'attendee@gmail.com',
 display_name='Friend',
 additional_guests=3
)

event = Event('Meeting',
 start=(17/Jul/2020)[12:00],
 attendees=attendee)

or

event = Event('Meeting',
 start=(17/Jul/2020)[12:00],
 attendees='attendee@gmail.com')

You can pass multiple attendees at once in a list.

event = Event('Meeting',
 start=(17/Jul/2020)[12:00],
 attendees=[
 'attendee@gmail.com',
 Attendee('attendee2@gmail.com', display_name='Friend')
])

To notify attendees about created/updated/deleted event use send_updates parameter in add_event, update_event,
and delete_event methods. See SendUpdatesMode for possible values.

To add attendees to an existing event use its add_attendee() method:

event.add_attendee(
 Attendee('attendee@gmail.com',
 display_name='Friend',
 additional_guests=3
)
)

or

event.add_attendee('attendee@gmail.com')

Update event using update_event() method to save the changes.

Attachments

If you want to add attachment(s) to your event, just create Attachment (s) and pass
as a attachments parameter:

from gcsa.attachment import Attachment

attachment = Attachment(file_url='https://bit.ly/3lZo0Cc',
 title='My file',
 mime_type='application/vnd.google-apps.document')

event = Event('Meeting',
 start=(22/Apr/2019)[12:00],
 attachments=attachment)

You can pass multiple attachments at once in a list.

event = Event('Meeting',
 start=(22/Apr/2019)[12:00],
 attachments=[attachment1, attachment2])

To add attachment to an existing event use its add_attachment() method:

event.add_attachment('My file',
 file_url='https://bit.ly/3lZo0Cc',
 mime_type='application/vnd.google-apps.document')

Update event using update_event() method to save the changes.

Conference

To add conference (such as Hangouts or Google Meet) to an event you can use ConferenceSolution
(for existing conferences) or ConferenceSolutionCreateRequest (to create new conference)
and pass it as a conference_solution parameter:

Existing conference

To add existing conference you need to specify its solution_type (see SolutionType for
available values) and at least one EntryPoint in entry_points parameter. You can pass
single EntryPoint:

from gcsa.conference import ConferenceSolution, EntryPoint, SolutionType

event = Event(
 'Meeting',
 start=(22 / Nov / 2020)[15:00],
 conference_solution=ConferenceSolution(
 entry_points=EntryPoint(
 EntryPoint.VIDEO,
 uri='https://meet.google.com/aaa-bbbb-ccc'
),
 solution_type=SolutionType.HANGOUTS_MEET,
)
)

or multiple entry points in a list:

event = Event(
 'Event with conference',
 start=(22 / Nov / 2020)[15:00],
 conference_solution=ConferenceSolution(
 entry_points=[
 EntryPoint(
 EntryPoint.VIDEO,
 uri='https://meet.google.com/aaa-bbbb-ccc'
),
 EntryPoint(
 EntryPoint.PHONE,
 uri='tel:+12345678900'
)
],
 solution_type=SolutionType.HANGOUTS_MEET,
)
)

See more parameters for ConferenceSolution and EntryPoint.

New conference

To generate new conference you need to specify its solution_type (see SolutionType for
available values).

from gcsa.conference import ConferenceSolutionCreateRequest, SolutionType

event = Event(
 'Meeting',
 start=(22 / Nov / 2020)[15:00],
 conference_solution=ConferenceSolutionCreateRequest(
 solution_type=SolutionType.HANGOUTS_MEET,
)
)

See more parameters for ConferenceSolutionCreateRequest.

Note

Create requests are asynchronous. Check status field of event’s conference_solution to find it’s
status. If the status is "success", conference_solution will contain a
ConferenceSolution object and you’ll be able to access its fields (like
entry_points). Otherwise (if status is "pending" or "failure"), conference_solution will
contain a ConferenceSolutionCreateRequest object.

event = calendar.add_event(
 Event(
 'Meeting',
 start=(22 / Nov / 2020)[15:00],
 conference_solution=ConferenceSolutionCreateRequest(
 solution_type=SolutionType.HANGOUTS_MEET,
)
)
)

if event.conference_solution.status == 'success':
 print(event.conference_solution.solution_id)
 print(event.conference_solution.entry_points)
elif event.conference_solution.status == 'pending':
 print('Conference request has not been processed yet.')
elif event.conference_solution.status == 'failure':
 print('Conference request has failed.')

Reminders

To add reminder(s) to an event you can create EmailReminder or
PopupReminder and pass them as a reminders parameter (single reminder
or list of reminders):

from gcsa.reminders import EmailReminder, PopupReminder

event = Event('Meeting',
 start=(22/Apr/2019)[12:00],
 reminders=EmailReminder(minutes_before_start=30))

or

event = Event('Meeting',
 start=(22/Apr/2019)[12:00],
 reminders=[
 EmailReminder(minutes_before_start=30),
 EmailReminder(minutes_before_start=60),
 PopupReminder(minutes_before_start=15)
])

You can also simply add reminders by specifying minutes_before_popup_reminder and/or
minutes_before_email_reminder parameter of the Event object:

event = Event('Meeting',
 start=(22/Apr/2019)[12:00],
 minutes_before_popup_reminder=15,
 minutes_before_email_reminder=30)

If you want to add a reminder to an existing event use add_email_reminder()
and/or add_popup_reminder() methods:

event.add_popup_reminder(minutes_before_start=30)
event.add_email_reminder(minutes_before_start=50)

Update event using update_event() method to save the changes.

To use default reminders of the calendar, set default_reminders parameter of the Event
to True.

Note

You can add up to 5 reminders to one event.

Recurrence

With gcsa you can create recurrent events. Use recurrence module.

There are 8 methods that you can use to define recurrence rules:

	rule() - rule that defines recurrence

	exclude_rule() - rule that defines excluded dates/datetimes

	dates() - date or list of dates to include

	exclude_dates() - date or list of dates to exclude

	times() - datetime or list of datetimes to include

	exclude_times() - datetime or list of datetimes to exclude

	periods() - period or list of periods to include

	exclude_periods() - period or list of periods to exclude

Note

Methods {method} have the same format and parameters as their exclude_{method}
counterparts. So all examples for {method} also apply to exclude_{method}.

These methods return strings in RRULE format that you can pass as a recurrence parameter
to the Event objects. You can pass one string or list of strings.
For example:

Event('Breakfast',
 (1/Jan/2020)[9:00],
 (1/Jan/2020)[10:00],
 recurrence=Recurrence.rule(freq=DAILY))

or

Event('Breakfast',
 (1/Jan/2019)[9:00],
 (1/Jan/2020)[9:00],
 recurrence=[
 Recurrence.rule(freq=DAILY),
 Recurrence.exclude_rule(by_week_day=[SU, SA])
])

Examples

You will need to import Recurrence class and optionally other
auxiliary classes and objects:

from gcsa.recurrence import Recurrence

days of the week
from gcsa.recurrence import SU, MO, TU, WE, TH, FR, SA

possible repetition frequencies
from gcsa.recurrence import SECONDLY, MINUTELY, HOURLY, \
 DAILY, WEEKLY, MONTHLY, YEARLY

Examples were taken from the Internet Calendaring and Scheduling Core Object Specification (iCalendar) [https://tools.ietf.org/html/rfc5545#section-3.8.5]
and adapted to gcsa.

Daily for 10 occurrences:

Recurrence.rule(freq=DAILY, count=10)

or as DAILY is a default frequency:

Recurrence.rule(count=10)

Every other day:

Recurrence.rule(freq=DAILY, interval=2)

Every 10 days, 5 occurrences:

Recurrence.rule(count=5, interval=10)

Every day in January:

Recurrence.rule(freq=YEARLY,
 by_month=1,
 by_week_day=[SU,MO,TU,WE,TH,FR,SA])

or

Recurrence.rule(freq=DAILY, by_month=1)

Weekly for 10 occurrences:

Recurrence.rule(freq=WEEKLY, count=10)

Weekly on Tuesday and Thursday:

Recurrence.rule(freq=WEEKLY,
 by_week_day=[TU, TH])

Every other week on Monday, Wednesday, and Friday:

Recurrence.rule(freq=WEEKLY,
 interval=2,
 by_week_day=[MO, WE, FR])

Every other week on Tuesday and Thursday, for 8 occurrences:

Recurrence.rule(freq=WEEKLY,
 interval=2,
 count=8,
 by_week_day=[TU, TH])

Monthly on the first Friday for 10 occurrences:

Recurrence.rule(freq=MONTHLY,
 count=10,
 by_week_day=FR(1))

Every other month on the first and last Sunday of the month for 10 occurrences:

Recurrence.rule(freq=MONTHLY,
 interval=2,
 count=10,
 by_week_day=[SU(1), SU(-1)])

Monthly on the second-to-last Monday of the month for 6 months:

Recurrence.rule(freq=MONTHLY,
 count=6,
 by_week_day=MO(-2))

Monthly on the third-to-the-last day of the month:

Recurrence.rule(freq=MONTHLY,
 by_month_day=-3)

Monthly on the 2nd and 15th of the month for 10 occurrences:

Recurrence.rule(freq=MONTHLY,
 count=10,
 by_month_day=[2, 15])

Monthly on the first and last day of the month for 10 occurrences:

Recurrence.rule(freq=MONTHLY,
 count=10,
 by_month_day=[1, -1])

Every 18 months on the 10th thru 15th of the month for 10 occurrences:

Recurrence.rule(freq=MONTHLY,
 interval=18,
 count=10,
 by_month_day=list(range(10, 16)))

Every Tuesday, every other month:

Recurrence.rule(freq=MONTHLY,
 interval=2,
 by_week_day=TU)

Yearly in June and July for 10 occurrences:

Recurrence.rule(freq=YEARLY,
 count=10,
 by_month=[6, 7])

Every third year on the 1st, 100th, and 200th day for 10 occurrences:

Recurrence.rule(freq=YEARLY,
 interval=3,
 count=10,
 by_year_day=[1, 100, 200])

Every 20th Monday of the year:

Recurrence.rule(freq=YEARLY,
 by_week_day=MO(20))

Monday of week number 20 (where the default start of the week is Monday):

Recurrence.rule(freq=YEARLY,
 by_week=20,
 week_start=MO)

Every Thursday in March:

Recurrence.rule(freq=YEARLY,
 by_month=3,
 by_week_day=TH)

The third instance into the month of one of Tuesday, Wednesday, or
Thursday, for the next 3 months:

Recurrence.rule(freq=MONTHLY,
 count=3,
 by_week_day=[TU, WE, TH],
 by_set_pos=3)

The second-to-last weekday of the month:

Recurrence.rule(freq=MONTHLY,
 by_week_day=[MO, TU, WE, TH, FR],
 by_set_pos=-2)

Every 20 minutes from 9:00 AM to 4:40 PM every day:

Recurrence.rule(freq=DAILY,
 by_hour=list(range(9, 17)),
 by_minute=[0, 20, 40])

Serializers

The library implements the JSON serializers for all available Google Calendar objects. JSON format is as specified in
the official API documentation [https://developers.google.com/calendar]. In general, you won’t need to use them, gcsa serializes everything as needed
under the hood. It is documented just so you know they exist and can be used if necessary.

Note

Note that serializer’s to_json methods ignore read-only fields of the objects.
Read only fields of the objects are ones that are passed to the parameters of their __init__ with
underscores, e.g. Event(_updated=25/Nov/2020).

Events serializer

To json

from gcsa.event import Event
from gcsa.serializers.event_serializer import EventSerializer

event = Event(
 'Meeting',
 start=(22 / Nov / 2020)[18:00]
)

EventSerializer.to_json(event)

{
 'summary': 'Meeting',
 'start': {
 'dateTime': '2020-11-22T18:00:00+01:00',
 'timeZone': 'Europe/Prague'
 },
 'end': {
 'dateTime': '2020-11-22T19:00:00+01:00',
 'timeZone': 'Europe/Prague'
 },
 'attachments': [],
 'attendees': [],
 'recurrence': [],
 'reminders': {'useDefault': False},
 'visibility': 'default'
}

To object

event_json = {
 'start': {
 'dateTime': '2020-11-22T18:00:00+01:00',
 'timeZone': 'Europe/Prague'
 },
 'end': {
 'dateTime': '2020-11-22T19:00:00+01:00',
 'timeZone': 'Europe/Prague'
 },
 'attachments': [],
 'attendees': [],
 'recurrence': [],
 'reminders': {'useDefault': False},
 'summary': 'Meeting',
 'visibility': 'default'
}

EventSerializer.to_object(event_json)

<Event 2020-11-22 18:00:00+01:00 - Meeting>

Attachments serializer

To json

from gcsa.attachment import Attachment
from gcsa.serializers.attachment_serializer import AttachmentSerializer

attachment = Attachment(
 file_url='https://bit.ly/3lZo0Cc',
 title='My file',
 mime_type='application/vnd.google-apps.document'
)

AttachmentSerializer.to_json(attachment)

{
 'title': 'My file',
 'fileUrl': 'https://bit.ly/3lZo0Cc',
 'mimeType': 'application/vnd.google-apps.document'
}

To object

attachment_json = {
 'fileUrl': 'https://bit.ly/3lZo0Cc',
 'mimeType': 'application/vnd.google-apps.document',
 'title': 'My file'
}

AttachmentSerializer.to_object(attachment_json)

<Attachment 'My file' - 'https://bit.ly/3lZo0Cc'>

Person serializer

To json

from gcsa.person import Person
from gcsa.serializers.person_serializer import PersonSerializer

person = Person(
 'john@gmail.com',
 display_name='BFF',
)

PersonSerializer.to_json(person)

{
 'email': 'john@gmail.com'
 'displayName': 'BFF',
}

To object

person_json = {
 'email': 'john@gmail.com',
 'displayName': 'BFF',
 'id': '123123',
 'self': True
}

PersonSerializer.to_object(person_json)

<Person 'john@gmail.com' - 'BFF'>

Attendees serializer

To json

from gcsa.attendee import Attendee
from gcsa.serializers.attendee_serializer import AttendeeSerializer

attendee = Attendee(
 'john@gmail.com',
 display_name='BFF',
 additional_guests=2
)

AttendeeSerializer.to_json(attendee)

{
 'email': 'john@gmail.com'
 'displayName': 'BFF',
 'additionalGuests': 2,
}

To object

attendee_json = {
 'email': 'john@gmail.com',
 'displayName': 'BFF',
 'additionalGuests': 2,
 'responseStatus': 'needsAction'
}

AttendeeSerializer.to_object(attendee_json)

<Attendee 'john@gmail.com' - response: 'needsAction'>

Conference serializer

EntryPoint

To json

from gcsa.conference import EntryPoint
from gcsa.serializers.conference_serializer import EntryPointSerializer

entry_point = EntryPoint(
 EntryPoint.VIDEO,
 uri='https://meet.google.com/aaa-bbbb-ccc'
)

EntryPointSerializer.to_json(entry_point)

{
 'entryPointType': 'video',
 'uri': 'https://meet.google.com/aaa-bbbb-ccc'
}

To object

entry_point_json = {
 'entryPointType': 'video',
 'uri': 'https://meet.google.com/aaa-bbbb-ccc'
}

EntryPointSerializer.to_object(entry_point_json)

<EntryPoint video - 'https://meet.google.com/aaa-bbbb-ccc'>

ConferenceSolution

To json

from gcsa.conference import ConferenceSolution, EntryPoint, SolutionType
from gcsa.serializers.conference_serializer import ConferenceSolutionSerializer

conference_solution = ConferenceSolution(
 entry_points=EntryPoint(
 EntryPoint.VIDEO,
 uri='https://meet.google.com/aaa-bbbb-ccc'
),
 solution_type=SolutionType.HANGOUTS_MEET,
)

ConferenceSolutionSerializer.to_json(conference_solution)

{
 'conferenceSolution': {
 'key': {
 'type': 'hangoutsMeet'
 }
 },
 'entryPoints': [
 {
 'entryPointType': 'video',
 'uri': 'https://meet.google.com/aaa-bbbb-ccc'
 }
]
}

To object

conference_solution_json = {
 'conferenceSolution': {
 'key': {
 'type': 'hangoutsMeet'
 }
 },
 'entryPoints': [
 {
 'entryPointType': 'video',
 'uri': 'https://meet.google.com/aaa-bbbb-ccc'
 }
]
}

ConferenceSolutionSerializer.to_object(conference_solution_json)

<ConferenceSolution hangoutsMeet - [<EntryPoint video - 'https://meet.google.com/aaa-bbbb-ccc'>]>

ConferenceSolutionCreateRequest

To json

from gcsa.conference import ConferenceSolutionCreateRequest, SolutionType
from gcsa.serializers.conference_serializer import ConferenceSolutionCreateRequestSerializer

conference_solution_create_request = ConferenceSolutionCreateRequest(
 solution_type=SolutionType.HANGOUTS_MEET,
)

ConferenceSolutionCreateRequestSerializer.to_json(conference_solution_create_request)

{
 'createRequest': {
 'conferenceSolutionKey': {
 'type': 'hangoutsMeet'
 },
 'requestId': '30b8e7c4d595445aa73c3feccf4b4f06'
 }
}

To object

conference_solution_create_request_json = {
 'createRequest': {
 'conferenceSolutionKey': {
 'type': 'hangoutsMeet'
 },
 'requestId': '30b8e7c4d595445aa73c3feccf4b4f06',
 'status': {
 'statusCode': 'pending'
 }
 }
}

ConferenceSolutionCreateRequestSerializer.to_object(conference_solution_create_request_json)

<ConferenceSolutionCreateRequest hangoutsMeet - status:'pending'>

Reminders serializer

To json

from gcsa.reminders import EmailReminder, PopupReminder
from gcsa.serializers.reminder_serializer import ReminderSerializer

reminder = EmailReminder(minutes_before_start=30)

ReminderSerializer.to_json(reminder)

{
 'method': 'email',
 'minutes': 30
}

reminder = PopupReminder(minutes_before_start=30)

ReminderSerializer.to_json(reminder)

{
 'method': 'popup',
 'minutes': 30
}

To object

reminder_json = {
 'method': 'email',
 'minutes': 30
}

ReminderSerializer.to_object(reminder_json)

<EmailReminder - minutes_before_start:30>

reminder_json = {
 'method': 'popup',
 'minutes': 30
}

ReminderSerializer.to_object(reminder_json)

<PopupReminder - minutes_before_start:30>

Code documentation

Contents:

	GoogleCalendar

	Event

	Person

	Attendees

	Attachments

	Conference

	Reminders

	Recurrence

GoogleCalendar

Event

	
class gcsa.event.Event(summary, start, end=None, *, timezone='Etc/UTC', event_id=None, description=None, location=None, recurrence=None, color_id=None, visibility='default', attendees=None, attachments=None, conference_solution=None, reminders=None, default_reminders=False, minutes_before_popup_reminder=None, minutes_before_email_reminder=None, guests_can_invite_others=True, guests_can_modify=False, guests_can_see_other_guests=True, transparency=None, _creator=None, _organizer=None, _created=None, _updated=None, _recurring_event_id=None, **other)

	
	Parameters

	
	summary – Title of the event.

	start – Starting date/datetime.

	end – Ending date/datetime. If ‘end’ is not specified, event is considered as a 1-day or 1-hour event
if ‘start’ is date or datetime respectively.

	timezone – Timezone formatted as an IANA Time Zone Database name, e.g. “Europe/Zurich”. By default,
the computers local timezone is used if it is configured. UTC is used otherwise.

	event_id – Opaque identifier of the event. By default is generated by the server. You can specify id as a
5-1024 long string of characters used in base32hex ([a-vA-V0-9]). The ID must be unique per
calendar.

	description – Description of the event. Can contain HTML.

	location – Geographic location of the event as free-form text.

	recurrence – RRULE/RDATE/EXRULE/EXDATE string or list of such strings. See recurrence

	color_id – Color id referring to an entry from colors endpoint (list_event_colors)

	visibility – Visibility of the event. Default is default visibility for events on the calendar.
See Visibility

	attendees – Attendee or list of attendees. See Attendee.
Each attendee may be given as email string or Attendee object.

	attachments – Attachment or list of attachments. See Attachment

	conference_solution – ConferenceSolutionCreateRequest object to create a new conference
or ConferenceSolution object for existing conference.

	reminders – Reminder or list of reminder objects. See reminders

	default_reminders – Whether the default reminders of the calendar apply to the event.

	minutes_before_popup_reminder – Minutes before popup reminder or None if reminder is not needed.

	minutes_before_email_reminder – Minutes before email reminder or None if reminder is not needed.

	guests_can_invite_others – Whether attendees other than the organizer can invite others to the event.

	guests_can_modify – Whether attendees other than the organizer can modify the event.

	guests_can_see_other_guests – Whether attendees other than the organizer can see who the event’s attendees are.

	transparency – Whether the event blocks time on the calendar. See Transparency

	_creator – The creator of the event. See Person

	_organizer – The organizer of the event. See Person.
If the organizer is also an attendee, this is indicated with a separate entry in attendees with
the organizer field set to True.
To change the organizer, use the move operation
see move_event()

	_created – Creation time of the event. Read-only.

	_updated – Last modification time of the event. Read-only.

	_recurring_event_id – For an instance of a recurring event, this is the id of the recurring event to which
this instance belongs. Read-only.

	other – Other fields that should be included in request json. Will be included as they are.
See more in https://developers.google.com/calendar/v3/reference/events

	
id

	

	
add_attendee(attendee)

	Adds attendee to an event. See Attendee.
Attendee may be given as email string or Attendee object.

	
add_attachment(file_url, title=None, mime_type=None)

	Adds attachment to an event. See Attachment

	
add_email_reminder(minutes_before_start=60)

	Adds email reminder to an event. See EmailReminder

	
add_popup_reminder(minutes_before_start=30)

	Adds popup reminder to an event. See PopupReminder

	
add_reminder(reminder)

	Adds reminder to an event. See reminders

	
is_recurring_instance

	

	
class gcsa.event.Visibility

	Possible values of the event visibility.

	DEFAULT - Uses the default visibility for events on the calendar. This is the default value.

	PUBLIC - The event is public and event details are visible to all readers of the calendar.

	PRIVATE - The event is private and only event attendees may view event details.

	
DEFAULT = 'default'

	

	
PUBLIC = 'public'

	

	
PRIVATE = 'private'

	

	
class gcsa.event.Transparency

	Possible values of the event transparency.

	
	OPAQUE - Default value. The event does block time on the calendar.

	This is equivalent to setting ‘Show me as’ to ‘Busy’ in the Calendar UI.

	
	TRANSPARENT - The event does not block time on the calendar.

	This is equivalent to setting ‘Show me as’ to ‘Available’ in the Calendar UI.

	
OPAQUE = 'opaque'

	

	
TRANSPARENT = 'transparent'

	

Person

	
class gcsa.person.Person(email=None, display_name=None, _id=None, _is_self=None)

	Represents organizer’s, creator’s, or primary attendee’s fields.
For attendees see more in Attendee.

	Parameters

	
	email – The person’s email address, if available

	display_name – The person’s name, if available

	_id – The person’s Profile ID, if available.
It corresponds to the id field in the People collection of the Google+ API

	_is_self – Whether the person corresponds to the calendar on which the copy of the event appears.
The default is False (set by Google’s API).

Attendees

	
class gcsa.attendee.Attendee(email, display_name=None, comment=None, optional=None, is_resource=None, additional_guests=None, _id=None, _is_self=None, _response_status=None)

	Represents attendee of the event.

	Parameters

	
	email – The attendee’s email address, if available.

	display_name – The attendee’s name, if available

	comment – The attendee’s response comment

	optional – Whether this is an optional attendee. The default is False.

	is_resource – Whether the attendee is a resource.
Can only be set when the attendee is added to the event
for the first time. Subsequent modifications are ignored.
The default is False.

	additional_guests – Number of additional guests. The default is 0.

	_id – The attendee’s Profile ID, if available.
It corresponds to the id field in the People collection of the Google+ API

	_is_self – Whether this entry represents the calendar on which this copy of the event appears.
The default is False (set by Google’s API).

	_response_status – The attendee’s response status. See ResponseStatus

	
class gcsa.attendee.ResponseStatus

	Possible values for attendee’s response status

	NEEDS_ACTION - The attendee has not responded to the invitation.

	DECLINED - The attendee has declined the invitation.

	TENTATIVE - The attendee has tentatively accepted the invitation.

	ACCEPTED - The attendee has accepted the invitation.

	
NEEDS_ACTION = 'needsAction'

	

	
DECLINED = 'declined'

	

	
TENTATIVE = 'tentative'

	

	
ACCEPTED = 'accepted'

	

Attachments

	
class gcsa.attachment.Attachment(file_url, title=None, mime_type=None, _icon_link=None, _file_id=None)

	File attachment for the event.

Currently only Google Drive attachments are supported.

	Parameters

	
	file_url – A link for opening the file in a relevant Google editor or viewer.

	title – Attachment title

	mime_type – Internet media type (MIME type) of the attachment. See available MIME types [https://developers.google.com/drive/api/v3/mime-types]

	_icon_link – URL link to the attachment’s icon (read only)

	_file_id – Id of the attached file (read only)

Conference

	
class gcsa.conference.ConferenceSolution(entry_points, solution_type=None, name=None, icon_uri=None, conference_id=None, signature=None, notes=None)

	Information about the conference solution, such as Hangouts or Google Meet.

	Parameters

	
	entry_points – EntryPoint or list of EntryPoint s.
Information about individual conference entry points, such as URLs or phone numbers.
All of them must belong to the same conference.

	solution_type – Solution type. See SolutionType

The possible values are:

	HANGOUT - for Hangouts for consumers (hangouts.google.com)

	NAMED_HANGOUT - for classic Hangouts for Google Workspace users (hangouts.google.com)

	HANGOUTS_MEET - for Google Meet (meet.google.com)

	ADD_ON - for 3P conference providers

	name – The user-visible name of this solution. Not localized.

	icon_uri – The user-visible icon for this solution.

	conference_id – The ID of the conference. Optional.
Can be used by developers to keep track of conferences, should not be displayed to users.

Values for solution types (see SolutionType):

	HANGOUT: unset

	NAMED_HANGOUT: the name of the Hangout

	HANGOUTS_MEET: the 10-letter meeting code, for example “aaa-bbbb-ccc”

	ADD_ON: defined by 3P conference provider

	signature – The signature of the conference data.
Generated on server side. Must be preserved while copying the conference data between events,
otherwise the conference data will not be copied.
None for a conference with a failed create request.
Optional for a conference with a pending create request.

	notes – String of additional notes (such as instructions from the domain administrator, legal notices)
to display to the user. Can contain HTML. The maximum length is 2048 characters

	
class gcsa.conference.EntryPoint(entry_point_type, uri=None, label=None, pin=None, access_code=None, meeting_code=None, passcode=None, password=None)

	Information about individual conference entry points, such as URLs or phone numbers.

When creating new conference data, populate only the subset of meeting_code, access_code, passcode,
password, and pin fields that match the terminology that the conference provider uses.

Only the populated fields should be displayed.

	Parameters

	
	entry_point_type – The type of the conference entry point.

Possible values are:

	
VIDEO - joining a conference over HTTP.

A conference can have zero or one VIDEO entry point.

	
PHONE - joining a conference by dialing a phone number.

A conference can have zero or more PHONE entry points.

	
SIP - joining a conference over SIP.

A conference can have zero or one SIP entry point.

	
MORE - further conference joining instructions, for example additional phone numbers.

A conference can have zero or one MORE entry point.

A conference with only a MORE entry point is not a valid conference.

	uri – The URI of the entry point. The maximum length is 1300 characters.
Format:

	
for VIDEO, http: or https: schema is required.

	
for PHONE, tel: schema is required.

The URI should include the entire dial sequence (e.g., tel:+12345678900,,,123456789;1234).

	
for SIP, sip: schema is required, e.g., sip:12345678@myprovider.com.

	
for MORE, http: or https: schema is required.

	label – The label for the URI.
Visible to end users. Not localized. The maximum length is 512 characters.

Examples:

	for VIDEO: meet.google.com/aaa-bbbb-ccc

	for PHONE: +1 123 268 2601

	for SIP: 12345678@altostrat.com

	for MORE: should not be filled

	pin – The PIN to access the conference. The maximum length is 128 characters.

	access_code – The access code to access the conference. The maximum length is 128 characters. Optional.

	meeting_code – The meeting code to access the conference. The maximum length is 128 characters.

	passcode – The passcode to access the conference. The maximum length is 128 characters.

	password – The password to access the conference. The maximum length is 128 characters.

	
VIDEO = 'video'

	

	
PHONE = 'phone'

	

	
SIP = 'sip'

	

	
MORE = 'more'

	

	
ENTRY_POINT_TYPES = ('video', 'phone', 'sip', 'more')

	

	
class gcsa.conference.ConferenceSolutionCreateRequest(solution_type=None, request_id=None, _status=None, conference_id=None, signature=None, notes=None)

	A request to generate a new conference and attach it to the event.
The data is generated asynchronously. To see whether the data is present check the status field.

	Parameters

	
	solution_type – Solution type. See SolutionType

The possible values are:

	HANGOUT - for Hangouts for consumers (hangouts.google.com)

	NAMED_HANGOUT - for classic Hangouts for Google Workspace users (hangouts.google.com)

	HANGOUTS_MEET - for Google Meet (meet.google.com)

	ADD_ON - for 3P conference providers

	request_id – The client-generated unique ID for this request.
By default it is generated as UUID.
If you specify request_id manually, they should be unique for every new CreateRequest,
otherwise request will be ignored.

	_status – The current status of the conference create request. Should not be set by developer.

The possible values are:

	”pending”: the conference create request is still being processed.

	”failure”: the conference create request failed, there are no entry points.

	
”success”: the conference create request succeeded, the entry points are populated.

In this case ConferenceSolution with created entry points
is stored in the event’s conference_data. And ConferenceSolutionCreateRequest is omitted.

	conference_id – The ID of the conference. Optional.
Can be used by developers to keep track of conferences, should not be displayed to users.

Values for solution types (see SolutionType):

	HANGOUT: unset

	NAMED_HANGOUT: the name of the Hangout

	HANGOUTS_MEET: the 10-letter meeting code, for example “aaa-bbbb-ccc”

	ADD_ON: defined by 3P conference provider

	signature – The signature of the conference data.
Generated on server side. Must be preserved while copying the conference data between events,
otherwise the conference data will not be copied.
None for a conference with a failed create request.
Optional for a conference with a pending create request.

	notes – String of additional notes (such as instructions from the domain administrator, legal notices)
to display to the user. Can contain HTML. The maximum length is 2048 characters

	
class gcsa.conference.SolutionType

	
	HANGOUT - for Hangouts for consumers (hangouts.google.com)

	NAMED_HANGOUT - for classic Hangouts for Google Workspace users (hangouts.google.com)

	HANGOUTS_MEET - for Google Meet (meet.google.com)

	ADD_ON - for 3P conference providers

	
HANGOUT = 'eventHangout'

	

	
NAMED_HANGOUT = 'eventNamedHangout'

	

	
HANGOUTS_MEET = 'hangoutsMeet'

	

	
ADD_ON = 'addOn'

	

Reminders

	
class gcsa.reminders.Reminder(method, minutes_before_start)

	Represents base reminder object

	Parameters

	
	method – Method of the reminder. Possible values: email or popup

	minutes_before_start – Minutes before reminder

	
class gcsa.reminders.EmailReminder(minutes_before_start=60)

	Represents email reminder object

	Parameters

	minutes_before_start – Minutes before reminder

	
class gcsa.reminders.PopupReminder(minutes_before_start=30)

	Represents popup reminder object

	Parameters

	minutes_before_start – Minutes before reminder

Recurrence

	
class gcsa.recurrence.Duration(w=None, d=None, h=None, m=None, s=None)

	Represents properties that contain a duration of time.

	Parameters

	
	w – weeks

	d – days

	h – hours

	m – minutes

	s – seconds

	
class gcsa.recurrence.Recurrence

	
	
static rule(freq='DAILY', interval=None, count=None, until=None, by_second=None, by_minute=None, by_hour=None, by_week_day=None, by_month_day=None, by_year_day=None, by_week=None, by_month=None, by_set_pos=None, week_start=<gcsa.recurrence._DayOfTheWeek object>)

	This property defines a rule or repeating pattern for recurring events.

	Parameters

	
	freq – Identifies the type of recurrence rule. Possible values are SECONDLY, HOURLY,
MINUTELY, DAILY, WEEKLY, MONTHLY, YEARLY. Default: DAILY

	interval – Positive integer representing how often the recurrence rule repeats

	count – Number of occurrences at which to range-bound the recurrence

	until – End date of recurrence

	by_second – Second or list of seconds within a minute. Valid values are 0 to 60

	by_minute – Minute or list of minutes within a hour. Valid values are 0 to 59

	by_hour – Hour or list of hours of the day. Valid values are 0 to 23

	by_week_day – Day or list of days of the week.
Possible values: :py:class:~SUNDAY, :py:class:~MONDAY, :py:class:~TUESDAY, :py:class:~WEDNESDAY,
:py:class:~THURSDAY ,:py:class:~FRIDAY, :py:class:~SATURDAY

	by_month_day – Day or list of days of the month. Valid values are 1 to 31 or -31 to -1.
For example, -10 represents the tenth to the last day of the month.

	by_year_day – Day or list of days of the year. Valid values are 1 to 366 or -366 to -1.
For example, -1 represents the last day of the year.

	by_week – Ordinal or list of ordinals specifying weeks of the year. Valid values are 1 to 53 or -53 to -1.

	by_month – Month or list of months of the year. Valid values are 1 to 12.

	by_set_pos – Value or list of values which corresponds to the nth occurrence within the set of events
specified by the rule. Valid values are 1 to 366 or -366 to -1.
It can only be used in conjunction with another by_xxx parameter.

	week_start – The day on which the workweek starts.
Possible values: :py:class:~SUNDAY, :py:class:~MONDAY, :py:class:~TUESDAY, :py:class:~WEDNESDAY,
:py:class:~THURSDAY ,:py:class:~FRIDAY, :py:class:~SATURDAY

	Returns

	String representing specified recurrence rule in RRULE format [https://tools.ietf.org/html/rfc5545#section-3.8.5].

Note

If none of the by_day, by_month_day, or by_year_day are specified, the day is gotten from start date.

	
static exclude_rule(freq='DAILY', interval=None, count=None, until=None, by_second=None, by_minute=None, by_hour=None, by_week_day=None, by_month_day=None, by_year_day=None, by_week=None, by_month=None, by_set_pos=None, week_start=<gcsa.recurrence._DayOfTheWeek object>)

	This property defines an exclusion rule or repeating pattern for recurring events.

	Parameters

	
	freq – Identifies the type of recurrence rule. Possible values are SECONDLY, HOURLY,
MINUTELY, DAILY, WEEKLY, MONTHLY, YEARLY. Default: DAILY

	interval – Positive integer representing how often the recurrence rule repeats

	count – Number of occurrences at which to range-bound the recurrence

	until – End date of recurrence

	by_second – Second or list of seconds within a minute. Valid values are 0 to 60

	by_minute – Minute or list of minutes within a hour. Valid values are 0 to 59

	by_hour – Hour or list of hours of the day. Valid values are 0 to 23

	by_week_day – Day or list of days of the week.
Possible values: :py:class:~SUNDAY, :py:class:~MONDAY, :py:class:~TUESDAY, :py:class:~WEDNESDAY,
:py:class:~THURSDAY ,:py:class:~FRIDAY, :py:class:~SATURDAY

	by_month_day – Day or list of days of the month. Valid values are 1 to 31 or -31 to -1.
For example, -10 represents the tenth to the last day of the month.

	by_year_day – Day or list of days of the year. Valid values are 1 to 366 or -366 to -1.
For example, -1 represents the last day of the year.

	by_week – Ordinal or list of ordinals specifying weeks of the year. Valid values are 1 to 53 or -53 to -1.

	by_month – Month or list of months of the year. Valid values are 1 to 12.

	by_set_pos – Value or list of values which corresponds to the nth occurrence within the set of events
specified by the rule. Valid values are 1 to 366 or -366 to -1.
It can only be used in conjunction with another by_xxx parameter.

	week_start – The day on which the workweek starts.
Possible values: :py:class:~SUNDAY, :py:class:~MONDAY, :py:class:~TUESDAY, :py:class:~WEDNESDAY,
:py:class:~THURSDAY ,:py:class:~FRIDAY, :py:class:~SATURDAY

	Returns

	String representing specified recurrence rule in RRULE format [https://tools.ietf.org/html/rfc5545#section-3.8.5].

Note

If none of the by_day, by_month_day, or by_year_day are specified, the day is gotten from start date.

	
static dates(ds)

	Converts date(s) set to RDATE format.

	Parameters

	ds – date/datetime object or list of date/datetime objects

	Returns

	RDATE string of dates.

	
static times(dts, timezone='Etc/UTC')

	Converts datetime(s) set to RDATE format.

	Parameters

	
	dts – datetime object or list of datetime objects

	timezone – Timezone formatted as an IANA Time Zone Database name, e.g. “Europe/Zurich”. By default,
the computers local timezone is used if it is configured. UTC is used otherwise.

	Returns

	RDATE string of datetimes with specified timezone.

	
static periods(ps, timezone='Etc/UTC')

	Converts date period(s) to RDATE format.

	Period is defined as tuple of starting date/datetime and ending date/datetime or duration as Duration object:

	(date/datetime, date/datetime/Duration)

	Parameters

	
	ps – Period or list of periods.

	timezone – Timezone formatted as an IANA Time Zone Database name, e.g. “Europe/Zurich”. By default,
the computers local timezone is used if it is configured. UTC is used otherwise.

	Returns

	RDATE string of periods.

	
static exclude_dates(ds)

	Converts date(s) set to EXDATE format.

	Parameters

	ds – date/datetime object or list of date/datetime objects

	Returns

	EXDATE string of dates.

	
static exclude_times(dts, timezone='Etc/UTC')

	Converts datetime(s) set to EXDATE format.

	Parameters

	
	dts – datetime object or list of datetime objects

	timezone – Timezone formatted as an IANA Time Zone Database name, e.g. “Europe/Zurich”. By default,
the computers local timezone is used if it is configured. UTC is used otherwise.

	Returns

	EXDATE string of datetimes with specified timezone.

	
static exclude_periods(ps, timezone='Etc/UTC')

	Converts date period(s) to EXDATE format.

	Period is defined as tuple of starting date/datetime and ending date/datetime or duration as Duration object:

	(date/datetime, date/datetime/Duration)

	Parameters

	
	ps – Period or list of periods.

	timezone – Timezone formatted as an IANA Time Zone Database name, e.g. “Europe/Zurich”. By default,
the computers local timezone is used if it is configured. UTC is used otherwise.

	Returns

	EXDATE string of periods.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gcsa	

 	
 	
 gcsa.recurrence	

 	
 	
 gcsa.reminders	

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	ACCEPTED (gcsa.attendee.ResponseStatus attribute)

 	add_attachment() (gcsa.event.Event method)

 	add_attendee() (gcsa.event.Event method)

 	add_email_reminder() (gcsa.event.Event method)

 	
 	ADD_ON (gcsa.conference.SolutionType attribute)

 	add_popup_reminder() (gcsa.event.Event method)

 	add_reminder() (gcsa.event.Event method)

 	Attachment (class in gcsa.attachment)

 	Attendee (class in gcsa.attendee)

C

 	
 	ConferenceSolution (class in gcsa.conference)

 	
 	ConferenceSolutionCreateRequest (class in gcsa.conference)

D

 	
 	dates() (gcsa.recurrence.Recurrence static method)

 	DECLINED (gcsa.attendee.ResponseStatus attribute)

 	
 	DEFAULT (gcsa.event.Visibility attribute)

 	Duration (class in gcsa.recurrence)

E

 	
 	EmailReminder (class in gcsa.reminders)

 	ENTRY_POINT_TYPES (gcsa.conference.EntryPoint attribute)

 	EntryPoint (class in gcsa.conference)

 	Event (class in gcsa.event)

 	
 	exclude_dates() (gcsa.recurrence.Recurrence static method)

 	exclude_periods() (gcsa.recurrence.Recurrence static method)

 	exclude_rule() (gcsa.recurrence.Recurrence static method)

 	exclude_times() (gcsa.recurrence.Recurrence static method)

G

 	
 	gcsa.recurrence (module)

 	
 	gcsa.reminders (module)

H

 	
 	HANGOUT (gcsa.conference.SolutionType attribute)

 	
 	HANGOUTS_MEET (gcsa.conference.SolutionType attribute)

I

 	
 	id (gcsa.event.Event attribute)

 	
 	is_recurring_instance (gcsa.event.Event attribute)

M

 	
 	MORE (gcsa.conference.EntryPoint attribute)

N

 	
 	NAMED_HANGOUT (gcsa.conference.SolutionType attribute)

 	
 	NEEDS_ACTION (gcsa.attendee.ResponseStatus attribute)

O

 	
 	OPAQUE (gcsa.event.Transparency attribute)

P

 	
 	periods() (gcsa.recurrence.Recurrence static method)

 	Person (class in gcsa.person)

 	PHONE (gcsa.conference.EntryPoint attribute)

 	
 	PopupReminder (class in gcsa.reminders)

 	PRIVATE (gcsa.event.Visibility attribute)

 	PUBLIC (gcsa.event.Visibility attribute)

R

 	
 	Recurrence (class in gcsa.recurrence)

 	Reminder (class in gcsa.reminders)

 	
 	ResponseStatus (class in gcsa.attendee)

 	rule() (gcsa.recurrence.Recurrence static method)

S

 	
 	SIP (gcsa.conference.EntryPoint attribute)

 	
 	SolutionType (class in gcsa.conference)

T

 	
 	TENTATIVE (gcsa.attendee.ResponseStatus attribute)

 	times() (gcsa.recurrence.Recurrence static method)

 	
 	Transparency (class in gcsa.event)

 	TRANSPARENT (gcsa.event.Transparency attribute)

V

 	
 	VIDEO (gcsa.conference.EntryPoint attribute)

 	
 	Visibility (class in gcsa.event)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Google Calendar Simple API’s documentation!

 		
 Getting started

 		
 Installation

 		
 Credentials

 		
 Quick example

 		
 Authentication

 		
 Credentials file

 		
 Token object

 		
 Multiple calendars

 		
 Browser authentication timeout

 		
 Events

 		
 List events

 		
 Get event by id

 		
 List recurring event instances

 		
 Create event

 		
 Update event

 		
 Import event

 		
 Move event to another calendar

 		
 Delete event

 		
 Clear calendar

 		
 Attendees

 		
 Attachments

 		
 Conference

 		
 Existing conference

 		
 New conference

 		
 Reminders

 		
 Recurrence

 		
 Examples

 		
 Serializers

 		
 Events serializer

 		
 To json

 		
 To object

 		
 Attachments serializer

 		
 To json

 		
 To object

 		
 Person serializer

 		
 To json

 		
 To object

 		
 Attendees serializer

 		
 To json

 		
 To object

 		
 Conference serializer

 		
 EntryPoint

 		
 ConferenceSolution

 		
 ConferenceSolutionCreateRequest

 		
 Reminders serializer

 		
 To json

 		
 To object

 		
 Code documentation

 		
 GoogleCalendar

 		
 Event

 		
 Person

 		
 Attendees

 		
 Attachments

 		
 Conference

 		
 Reminders

 		
 Recurrence

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

